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The quasi-two-dimensional sedimentation of silica particles in viscous fluids results in quasi-one-
dimensional rough surfaces. These surfaces are rough on all length scales between the particle size
and the cell size, but different roughness exponents are observed in two well defined length-scale
regimes. The range of hydrodynamic forces should play an important role in determining which,
if either, length-scale regime shows universal properties. The strong similarity between the height-
height correlations of the surface and the density-density correlations inside the flow at longer length
scales suggests that the roughness at longer length scales is very closely tied to the hydrodynamic
interactions in the fluid. Measurements have been performed at three different cell aspect ratios
and at three different fluid viscosities and in no case is there an observable change in the crossover

length scale of the system.

PACS number(s): 81.15.Lm, 47.15.Gf, 47.53.+n, 05.40.+j

I. INTRODUCTION

The growth of rough surfaces is a problem of practi-
cal importance and also involves fundamental nonequilib-
rium statistical physics [1]. Although sedimentation has
been widely investigated in various areas of geology and
engineering, the formation of rough interfaces via sedi-
mentation is still relatively unstudied [2]. The hydrody-
namics of this problem is very complicated and should
involve long-range forces caused by backflows from the
motion of neighboring particles out to a distance set by
viscosity and the density of the particles in the settling
suspension [3,4]. Since hydrodynamic forces are in princi-
ple long range, rough interfaces formed through sedimen-
tation provide a significantly different growth situation
for comparison with other studies of apparently similar
final interfaces. The similarity of rough interfaces grown
through such different mechanisms leads to the question
of the possible existence of universal phenomena, and if
sedimentation fits into a class exhibiting universal phe-
nomena, can one use noise plus a simple growth law to ex-
plain them? In this paper we report experiments in which
several control parameters (fluid viscosity, sedimentation
cell width, and cell length) were varied to examine the
robustness and possible asymptotic features of quasi-one-
dimensional interfaces formed by quasi-two-dimensional
sedimentation.

II. EXPERIMENTAL METHOD

In the sedimentation experiment discussed in this pa-
per all measurements have been performed with closed
cells. The walls of these cells are of 1/4-in. float glass
and these are held 1 mm apart by sealed side frames of
precision-machined Plexiglass. To examine the effects of
viscosity, each cell was filled with one of three different
viscous liquids. A very large number ( ~ 40000) of 0.06-
cm-diam monodisperse silica spheres [5] were also placed
in the cells before they were closed; these particles filled
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approximately 1-3 % of the volume of the cells. The var-
ious cell sizes used and corresponding liquids are given
in Table I. One typical cell is shown in Fig. 1. Each cell
could be rotated about a horizontal axis perpendicular
to the gap direction. When the cell was rotated, the par-
ticles that had been at rest at the bottom fell through
the oil, slowly building a new surface at the bottom of
the cell. During each such process we photographed the
cell (or parts of the cell). All of our measurements were
made with a 35-mm single-lens reflex slide camera. The
slides were then digitized to a maximum resolution of
2048 %1366 pixels by a Nikon LS 3500 35-mm film scan-
ner. Individual particles were typically resolvable and
thus the position of the particles could be traced very
accurately using the image analysis program OPTIMAS
[6].

We concentrated our efforts mainly on analyzing the
final surface and the dynamics of its formation. The
analysis of the final interface (after all the particles have
come to rest) is usually more accurate than the analysis
made during the formation of the interface, because the

FIG. 1. Example of a typical cell with dimensions of
40x40 cm?® and a cell gap of 1 mm.
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TABLE 1. Various cell sizes used in the sedimentation experiment and corresponding liquids.

Cell Size Filling liquid as o B
(em?)
A 40x40 glycerin (1300 cP) 0.80 & 0.05 0.93 +£0.03 0.47 +0.13
B 40x40 heavy oil (180 cP) 0.76 4+ 0.07 0.90 £+ 0.06 0.43 +0.18
C 40x40 light oil (50 cP) 0.72 £ 0.03 0.93 £ 0.04 0.46 £ 0.03
D 4020 heavy oil (180 cP) 0.79 £ 0.04 0.94 £ 0.04 0.60 + 0.02
E 120x30 heavy oil (180 cP) 0.85 4 0.06 0.97 + 0.03 0.66 +£0.10

motion of the individual particles at earlier stages of the
process tends to blur the image obtained and also be-
cause it can be ambiguous whether a particular particle
has joined the interface or is still falling. Particle density
fluctuations in the fluid above the interface could also
be determined from the intensity distribution in the dig-
itized photographs, with intensity vs position typically
extracted for several horizontal lines defined on the im-
age of the cell.

Although there is convection in the cell at large scales
during the flow, as particles join the interface they tend
to settle in gently on a vertical line with no obvious lat-
eral movement as they approach the surface. After hit-
ting the interface they roll to the nearest local minimum,
which is no more than one particle diameter away from
the impact point. Since they roll to the nearest local
minimum, overhangs are never formed.

For each cell type we have measured several time series
in which patterns were measured at regular intervals from
the earliest completely covering array until the last of the
particles settled down. We have also measured numerous
independent runs in which we measured only the final
configuration of the settled particles.

The first obvious question about the global behavior

FIG. 2. Evolution of a typical initial configuration. Start-
ing from the top picture, each picture shows the final interface
after the cell is rotated once. The data shown are for cell type
A.

of the settling particles is whether the final configuration
of particles might depend in some very important way on
the initial configuration of particles at the top of the cell.
We found that, if we tilted and shook the cell to force an
initial configuration of particles that was very atypical,
then the system required approximately four resettlings
of the particles before the atypical configuration’s fea-
tures were completely obliterated. However, if the initial
configuration was not prepared to be atypical, no obvious
correlation between initial and final configurations could
be discerned by eye, as can be seen in Fig. 2.

In an attempt to make this insight quantitative and to
look for subtler correlations, we defined a mean absolute
difference function [7] between initial and later configu-
rations to be

1
Ah, = N mz | hn(z5) = ha(zs) ] (1)

where n is the number of the configurations in the se-
quence, h,(z;) is the height of the interface at horizontal
position z; after the nth run, and N is the number of
surface sites ;. Figure 3 shows this function for 50 sedi-
mentation runs following a very atypical configuration in
which the particles formed a triangle on one side of the
cell. Figure 4 shows data from most of the same runs, but
the sixth run from Fig. 3 is used as the initial configura-
tion and compared with all subsequent runs. No obvious
correlations appear once the triangular configuration is
forgotten by the system.
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FIG. 3. Mean absolute difference function defined in the
text using an atypical triangular initial configuration for the
first run.
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FIG. 4. Mean absolute difference function defined in the
text using a typical initial configuration for the first run.

If we go back to Fig. 2, which is a collection of several
typical configurations at the end of sedimentation runs,
we see that there was a strong tendency to have minima
near the walls of the cell, so to minimize the wall effects
we have only used the middle 70% of each interface for
the analyses presented below. Within the middle 70% of
the cell there is, on the average, only a gentle variation of
surface height across the cell. Figure 5 shows the average
position of the middle 30 cm of the interface at the end
of a run for cell type A, which had a width of 40 cm; this
average has been constructed using 46 runs, excluding
the atypical, triangular run and its first few descendants
at the beginning of the experiment. This issue will be
discussed below in greater detail.

The set of final configurations of all the runs from all
the cell types can be used to define the roughness of the
interface with great accuracy. We define the rms thick-
ness of the interface to be

LN 1/2
W(L,t) = [ﬁzh(wi,t)z] , (2)

where
h(z;,t) = h(z;,t) — h(t) (3)

and

h (cm)

X (cm)

FIG. 5. Interface height as a function of position = averaged
over 46 independent final configurations. As discussed in the
text, 7.5 cm have been eliminated on each side of the cell.
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FIG. 6. Example of the roughness function W (L, t) at the
end of a typical run for cell type A.

It is not at all clear that our system is in a scaling
regime, nor is it obvious that scaling ideas should apply
to sedimentation, but a useful way of analyzing our data
is to adopt and extend the standard roughness analysis by
tentatively accepting a scaling ansatz for rough interface
growth [8]. If we follow this ansatz, we write

W(L,t) = L*f(t/L*/), (5)

where the exponents a and § are the static and dynamic
scaling exponents. The function f(t/L>/?) is expected
to have an asymptotic form such that

W(L,t) ~tP for t < L*/P,
(6)
W(L,t) ~ L* fort > L°/P .

Figure 6 shows a typical example of W (L) at late times
for cell type A. There are clearly two domains of rough-
ness. At small length scales (L < 1 cm), there is roughly
a decade in L wherein the data appear to follow a power
law whose exponent is o, = 0.747 for this final state.
At longer length scales (L > 1 cm), there is roughly a
decade over which a different exponent can be identified.
The value of this exponent «; in Fig. 6 is 0.950. As can be
seen from Table I, which shows average exponents for all
runs in each kind of cell, similar behavior is observed for
all cell configurations. Even though it is clear that there
cannot be two asymptotic regimes (and there may not
be even one), these two well defined roughness regimes
are a clear property of our sedimentary interfaces (and
of some other experiments on rough interfaces). We will
thus proceed to discuss the empirical analysis, postpon-
ing interpretation of possible universal effects.

In an attempt to observe early stages of the develop-
ing interface and study the dynamics of interface growth,
time series of measurements were performed for various
flow realizations. Results from one such flow realization
can be seen in Fig. 7, where we show the interfacial rough-
ness W(L,t) for three different times in the same run. In
Fig. 8 we show the two roughness exponents for all times
in the same time series. While the final interface rough-
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FIG. 7. Roughness function W (L, t) is shown for three val-
ues of time in one typical time series for a cell type E.

ness is very reproducible, at the early stages of interface
growth, large fluctuations of roughness were observed.
We are aware that in order to apply the preceding scal-
ing analysis to the sedimentation problem, the ensemble
average of the height of the interface (Fig. 5) must be a
horizontal line. In order to see the effects of the inho-
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FIG. 8. Time evolution of the two exponents o and «; for
a typical time series for cell type A.
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FIG. 9. Example of the roughness function W (L, t) at the
end of a typical run for cell type A, where we have referenced
the height of the interface to the ensemble average of the 46
runs discussed above and not to the average height of a single
run. The two exponents obtained from this plot are as = 0.64
and o; = 0.83.

mogeneity (departure from horizontal) on our results we
have used different averaging methods. The first method
is to reference the height to the ensemble average of the
type shown in Fig. 5 and not to the average height of a
single run. Figure 9 shows one example of this analysis
where we have used the same data set that was used to
obtain Fig. 6. As can be seen from Fig. 9 the fundamen-
tal behavior of the exponents did not change. Through
all of the data that has been analyzed the fluctuation in
the exponents remained of the order of the fluctuations
from one run to the next.

We have also investigated the effect of obtaining data
from different parts of the final interface, i.e., closer to
the walls or from the middle. For this purpose we have
divided the interface into smaller boxes of width 10 cm.
These boxes were from 0 to 10 cm, from 5 to 15 cm, from
10 to 20 cm, etc. Figure 10 shows this analysis for the
average of six runs from the set of 46 final runs for cell
type A. The fluctuation in the exponents is small and of
the order of the fluctuations from one run to the next.

Another possibility would be to use only data from
the center region of the cells used. To investigate this
possibility further we have decreased the portion that we
have been using in our analysis from 70% to 25% and
we have not observed any behavioral change that would
suggest an additional advantage of using a smaller (than
70%) portion of the width of the cell in our analysis. All
these different averaging techniques convinced us that the
data analysis method we are using to describe our results
is robust and any changes in averaging will not change
the fundamental results discussed in this paper.

Since roughness and correlation analyses might be ex-
pected to bring out very different features of a data set
of finite size, we have also constructed the height-height
correlation function

c(L,t) = ([h(2',t") — h(x' + L, +)Derer.  (7)

Returning to the scaling ansatz of Family and Vicsek [8],
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FIG. 10. Roughness exponents a, and o; calculated from
the data from different parts of the cell in the same run. This
figure shows the average final frame behavior over six runs
arbitrarily selected from a pool of 46 runs for cell type A. All
of the values correspond to analyses of 10-cm intervals with
the center point of each interval shown as position z in the
cell.

we expect ¢(L,0) ~ L2 for L significantly less than the
length of the cell and ¢(0,t) ~ t?# for short time differ-
ences. This approach provides an alternative weighting
of the data to determine average exponents. ¢(L,0) vs L
does not always yield roughness exponent values consis-
tent with the previous analysis. This appears to result
from the effect discussed above where the roughness ex-
ponents change with time and show large fluctuations at
early times. If this were not true, then the short-length-
scale exponent would in principle be extractable.

In Fig. 11 we show ¢(0,t) vs t for one time series of
cell type A. The value of 8 determined from Fig. 11
is 0.61 £+ 0.05. Table I lists [ values for all the time
series runs of different cell types. As can be seen in the
uncertainties from the table, the value of 3 fluctuates
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FIG. 11. Height-height correlation function ¢(0,t) vs ¢t for
one time series for cell type A.

significantly from run to run, but over all of the runs we
obtain an average of 8 = 0.52 £0.10. It was not possible
to use Eq. (7) to extract reliable values of 8 from the
roughness functions because the analysis is too sensitive
to the observed temporal variations in a.

Having used a scaling ansatz to organize the data, we
return to the question of which, if either, length-scale
regime is the scaling regime. One might argue that the
long-length-scale roughness is dominated by wall effects
(although the results of Fig. 10 argue against this) and
that the short length scales are the ones that exhibit uni-
versal effects. On the other hand, hydrodynamic effects
are long range, and it might be argued that universal
roughening effects would only be expected at spatial sep-
arations large enough for the screening effects of many
particles to destroy any hydrodynamic coherence. In an
attempt to discriminate between these two arguments, we
have varied our control parameters to change character-
istic length scales of either the apparatus or the particle
interactions. That is, we have varied the viscosity and the
aspect ratio. While, in principle, changing the viscosity
and changing the aspect ratio can be argued to be equiva-
lent, cooperative screening effects in this system are very
likely to separate the two effects. Despite our changing
the viscosity by changing fluids and the aspect ratio by
changing both the length and the width of the cell inde-
pendently, we found that the short- and long-length-scale
roughness exponents remained unchanged (see Table I).
The crossover regime at about L = 1 cm did not change
either, even though it should move toward the wall in a
wider cell if long length scales are dominated by cell ef-
fects, toward the wall without a change of cell size when
viscosity is increased if it arises from the range of hydro-
dynamic forces, etc. Something is clearly very robust in
the form of these random interfaces.

In an attempt to quantify the noise in the problem we
have constructed a spatiotemporal fluctuation function

(9]
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FIG. 12. Spatial correlation function of spatiotemporal
fluctuation function n(z,t) for arbitrarily chosen ¢t = 13 min
in one time series of cell type A.
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FIG. 13. Probability distribution function of spatiotem-
poral fluctuation function n(z,t) for arbitrarily chosen
t = 13 min in one time series of cell type A.

where t; is larger than ¢; by a specified small amount §t.
An example of such a spatial correlation function n(z,t)
is shown in Fig. 12. The noise falls off at short length
scales, with a characteristic distance of approximately 2
cm, and is anticorrelated at large length scales (> 4 cm).
The probability distribution of fluctuations is shown in
Fig. 13 vs n%. If the noise were pure Gaussian, the data
in Fig. 13 would fall on a straight line. While the data
do not fall on a line, they definitely do not follow a power
law (see inset to Fig. 13) and might be considered to be
Gaussian with some superimposed long-range distribu-
tion. :
During all of the runs we have observed complex pat-

0.0 5.0 10.0 15.0 20.0
L (cm)
FIG. 14. Spatial correlation function of the fluctuation of

the final height of the surface h for cell type A. The figure
shows the average over three runs.
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FIG. 15. Density-density correlation function of sediment-
ing silica spheres in glycerin 6 cm above a bottom of the cell,
25 min after the first particle has reached the bottom. The
data shown are the average of three runs.

terns within the flow far above the interface while the
particles are settling down. This leads us to question
whether the correlations in the flow may be in some way
connected to the spatial correlations in the surface. To
investigate this connection we measured the spatial corre-
lation function of the fluctuation of the height of the sur-
face h. Figure 14 shows this spatial correlation function
averaged over three runs of cell type A. We also obtained
the density of particles inside the flow from the reflected
light intensity as a function of position, and Fig. 15 shows
the density-density correlation function for particles 6 cm
above the interface in this cell, averaged over the same
three runs. Different cell types at different stages of the
flow and at different heights give similar results to the
case shown in Fig. 15. The first few points at short length
scales come from the self-correlations of the particles and
can be ignored. Comparing Fig. 14 with Fig. 15, we can
conclude that there are similarities between flow corre-
lations and surface structure correlations at long length
scales, but there are no obvious similarities at shorter
length scales. The difference in concavity between the
two correlation functions at shorter length scales can be
seen in Fig. 16, where we have contracted and superim-
posed the spatial correlation function of Fig. 14 on the
density-density correlation function of Fig. 15. This sug-
gests that hydrodynamics may dominate the formation of
the long-length-scale roughness, but not the short-scale
effects.

Many observers see two different roughness regimes
[10-20], and some of them argue that they know which
regime is asymptotic. ~Owur inability to change the
crossover length scale either by changing the width of the
cell (which might be expected to exhibit any important
wall effects) or by changing fluid viscosity (which might
be expected to change the effective range of particle-
particle interactions) leaves us unable to choose which, if
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FIG. 16. Spatial correlation function of the fluctuation of
final height of the surface (A) and the density-density corre-
lation function of the particles 6 cm above a bottom of the
cell (o) are shown. The scale of the vertical axis is arbitrarily
adjusted to be able to show the similarities and the differences
between the two correlation functions.

either, regime to call asymptotic. On the other hand, the
robustness of the results suggests that there are univer-
sal aspects to the growth of these sedimentary surfaces,
and the lack of change when cell length is drastically in-
creased argues against the surfaces exhibiting transient
effects.

Unfortunately, it is difficult to comment on the role
of hydrodynamics when we have so many particles set-
tling simultaneously. Analytic sedimentation theory has
succeeded only in analyzing the attraction between two
settling particles [21], the effective behavior of settling
particles in the dilute regime [3,22,23], and some features
of many-body interactions between the particles [24,25].
Computer simulations have proven to be quite success-
ful in accounting for interactions among hundreds (but
not yet tens of thousands) of particles [26]. In addition,
phenomenological analytic theory has described some in-

teresting length scales that appear in the breakup of a
line or a plane of settling homogeneous particles [27,28]
or of arrays of mixed particles [29]. Beyond this, some
recent theoretical work [30,31] has heightened pessimism
by highlighting how complicated the situation is, while
interesting experimental results have become available
and other recent theoretical work [4,32] holds out some
hope of determining the particles’ interactions and pro-
files through wide ranges of volume fraction and Péclet
number in sedimentation problems.

III. CONCLUSION

Surface roughness in sedimentation is robust against
a series of significant changes in control parameters of
fluid flow and this suggests that the roughness may rep-
resent universal behavior. However, there cannot be two
asymptotic regimes and there is clearly more to be under-
stood in the double-regime phenomena of this problem.
It is nevertheless worth noting that if the large L regime
is asymptotic, then the correlations with the fluid flow
suggest that we look to the hydrodynamics for an ex-
planation. If the small L regime is asymptotic, surface
fluctuations do not correlate closely with density fluctu-
ations in the supernatant fluid and then a simple growth
law plus noise might be appropriate to explain the re-
sults we obtained (and the noise we measure is close to
Gaussian). If the latter approach were to be adopted,
it would raise the same question raised by several other
rough interface growth experiments that the roughness
exponents are not those expected from the Kardar-Parisi-
Zhang dynamics [33] with Gaussian noise [7,34,35].
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FIG. 1. Example of a typical cell with dimensions of
40%40 em? and a cell gap of 1 mm.



FIG. 2. Evolution of a typical initial configuration. Start-
ing from the top picture, each picture shows the final interface
after the cell is rotated once. The data shown are for cell type
A.



